Secondary structure, orientation, and oligomerization of phospholemman, a cardiac transmembrane protein.

نویسندگان

  • Andrew J Beevers
  • Andreas Kukol
چکیده

Human phospholemman (PLM) is a 72-residue protein, which is expressed at high density in the cardiac plasma membrane and in various other tissues. It forms ion channels selective for K+, Cl-, and taurine in lipid bilayers and colocalizes with the Na+/K+-ATPase and the Na+/Ca2+-exchanger, which may suggest a role in the regulation of cell volume. Here we present the first structural data based on synthetic peptides representing the transmembrane domain of PLM. Perfluoro-octaneoate-PAGE of reconstituted proteoliposomes containing PLM reveals a tetrameric homo-oligomerization. Infrared spectroscopy of proteoliposomes shows that the PLM peptide is completely alpha-helical, even beyond the hydrophobic core residues. Hydrogen/deuterium exchange experiments reveal that a core of 20-22 residues is not accessible to water, thus embedded in the lipid membrane. The maximum helix tilt is 17 degrees +/- 2 degrees obtained by attenuated total reflection infrared spectroscopy. Thus, our data support the idea of ion channel formation by the PLM transmembrane domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phospholemman and the cardiac sodium pump: protein kinase C, take a bow.

In excitable tissues, the activity of the plasmalemmal sodium/potassium ATPase (Na/K pump) is vital for the maintenance of normal electrical activity and ion gradients. In cardiac muscle, the transsarcolemmal sodium (Na) gradient established by the Na/K activity is essential not only for generating the rapid upstroke of the action potential but also for driving a number of ion exchange and tran...

متن کامل

Hypertrophy, increased ejection fraction, and reduced Na-K-ATPase activity in phospholemman-deficient mice.

Phospholemman (FXYD1), a 72-amino acid transmembrane protein abundantly expressed in the heart and skeletal muscle, is a major substrate for phosphorylation in the cardiomyocyte sarcolemma. Biochemical, cellular, and electrophysiological studies have suggested a number of possible roles for this protein, including ion channel modulator, taurine-release channel, Na(+)/Ca(2+) exchanger modulator,...

متن کامل

Novel regulation of cardiac Na pump via phospholemman.

As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange, thus setting cardiac Ca load and contractility. As Na influx varies wit...

متن کامل

Role of Molecular Interactions and Oligomerization in Chaperone Activity of Recombinant Acr from Mycobacterium tuberculosis

Background: The chaperone activity of Mycobacterium tuberculosis Acr is an important function that helps to prevent misfolding of protein substrates inside the host, especially in conditions of hypoxia. Objectives: The aim of this study was to establish the correlation of structure and function of recombinant Acr proteins both before and after ge...

متن کامل

NEWS IN PHYSIOLOGICAL SCIENCES Channels With Single Transmembrane Segments

To the Editor: In reviewing recent studies on the Isk K+ channel, Toru Takumi (4, who discovered this intriguing protein, suggests that together with the M2 protein of influenza virus and phospholemman, Isk defines a new group of voltage-dependent channels with single transmembrane segments, His argument ignores the sequence homology between phospholemman and two other membrane proteins, the y-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 2006